Two New Acyclic Diterpene-γ-lactones from the Leaves of Salix matsudana

Jin Xin WANG¹, Shang Zhen ZHENG²*, Tong SHEN², Xu Wei SHEN², Ying LI¹*

¹National Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000 ²Department of Chemistry, Northwest Normal University, Lanzhou 730070

Abstract: Two new acyclic diterpene- γ -lactones named hanliuine III (1) and hanliuine IV (2) were isolated from leaves of *Salix matsudana* (Chinese name "hanliu"). Their structures were deduced from spectral data.

Keywords: Salix matsudana, acyclic diterpene - γ-lactone.

Salix matsudana Koidz., a species of *Salicaceae*, is mostly distributed in northern and western in China¹, especially in eastern Gansu. Its leaves are reported to be useful for treating jaundice, hepatitis, rheumatism, arthritis and eczema^{2, 3}. But its chemical constituents were scarcely known. Continuing our previous work on the constituents of this herb two new acyclic diterpenoids **1** and **2** were obtained.

Compound **1** was a yellow gum with $[\alpha]_{D}^{20}$ -130.5 (CHCl₃, *c* 0.25). Its HR-EIMS gave a peak at m/z 445 $[M+1]^+$ corresponding to the molecular formula $C_{26}H_{36}O_{6.}$ (m/z 444.5676; calc.444.5682). The IR spectrum displayed absorption bands for α , β - un-saturated- γ -lactone (1751, 1685 cm⁻¹), acetyl carbonyl (1740 cm⁻¹) methacrylate and carbonyl (1705 cm⁻¹). The ¹³C NMR and DEPT spectra (**Table 2**) of **1** clearly exhibited

26 carbon signals (6×CH₃, 6×CH₂, 6×CH, 5×C, 3×CO). Meanwhile, the ¹H- ¹H COSY and HMQC spectra indicated the presence of an acyclic diterpene- γ -lactone skeleton^{4, 5} with an acetyl group located at C-12, a methacrylate group at C-1, and without a hydroxyl group at C-8. Close similarity in chemical shifts, coupling patterns and coupling constants led us to assume the similarity of the structures of hanliuine I and hanliuine II⁴. Only the difference was found at C-8. The HMQC spectrum showed that the non-equivalent methylene protons at δ 2.18 (ddd, J=10.0, 6.0, 2.0 Hz, H-8a) and δ 2.03 (brt, J=11.0 Hz, H-8b) correlated with C-8 (t, δ 26.3). And the ¹H-¹H COSY spectrum obviously displayed that the signals at δ 2.18 and 2.03 were coupled with the non-equivalent methylene protons at δ 2.26 (ddd, J=12.4, 12.4, 10.4, 2.0 Hz, H-9a) and 2.10 (dddd, J=12.0, 8.0, 6.0, 2.0 Hz, H-9b), which in turn correlated with a vinyl proton at δ 6.94 (H-10). In the HMBC spectrum, C-8 /H-6, H-9a, H-9b, H-19 and C-9/H-8a, H-8b, H-10, confirmed the structural fragment =CH(10)- $CH_2(9)$ - $CH_2(8)$ -C(7). In addition, its ¹HNMR spectrum gave the proton signals: δ 6.03 (brs, H-3'a), 5.58 (t, H-3'b) and 1.90 (brs, CH₃-4'). Meanwhile, according to the signals of ¹³C NMR spectrum at δ 166.0 (CO), 135.4 (C), 126.8 (CH₂), 18.3 (CH₃) and cross signals: C-1¹/ H-1, H-3'a, H-3'b, H-4' and C-4'/ H-3'a, H-3'b in HMBC spectrum, the presence of a methacrylate at C-1 was strongly confirmed. Since the HMBC spectrum showed cross peak of an acetyl carbonyl signal (δ 170.0) with H-12 (δ 4.88), the acetyl group must be attached to C-12.

The relative stereochemistry of compound **1** was determined on the basis of the NOESY information (**Figure 1**). Comparison of its NOESY spectrum with those of structurally related natural products⁴, their relative stereochemistry was the same. But the absolute configuration at C-12 and C-13 were not determined, the coupling constant $J_{12, 13} = 2$ Hz was in agreement with a dihedral angle of *ca* 70 or 115° which revealed a *trans*-relationship of H-12 and H-13⁵.

Therefore, the structure of compound 1 was deduced as an acyclic diterpene- γ -lactone named hanliuine III.

Compound **2** was a pale yellow gum with $[\alpha]_{D}^{20}$ -126.9 (CHCl₃, *c* 0.25). Its HR-EIMS revealed a molecular formula of C₂₄H₃₆O₆ (*m/z* 420.5470, calc. 420.5462).

The ¹³C NMR and DEPT spectra (**Table 2**) of **2** displayed 24 carbon signals($5 \times CH_3$, $6 \times CH_2$, $7 \times CH$, $4 \times C$, $2 \times CO$). Its IR spectrum gave absorption bands for hydroxyl (3350

434 Two New Acyclic Diterpene- g-lactones from the Leaves of Salix matsudana

cm⁻¹) and α , β -unsaturated- γ -lactone (1748, 1680 cm⁻¹) and ester carbonyl (1718 cm⁻¹). The ¹H, ¹³C NMR and DEPT (**Table 1** and **2**), IR, MS and NOESY spectral data of **2** were very similar to those of **1** (**Figure 1**). Comparing the ¹³C NMR and ¹H NMR spectra of **2** with those of **1** led to the conclusion that the main difference was the substitution of 3-hydroxy-butyrate group [¹³C NMR: δ 22.1(q), 45.5 (t), 63.8 (d), 171.0 (s); ¹H NMR: as shown in the **Table 1**] at C-1 in **2**. Furthermore, in the HMBC spectrum the correlation peak between H-1 and CO of 3-hydroxy-butyrate group was clearly observed. So this group must be attached to C-1. Besides, a hydroxy at C-12 rather than an acetoxy group was confirmed by the HMBC spectrum. From the above information, hanliuine IV was determined to have the structure as shown in **2**.

No.	1 δ _H	2 δ _H
1a, 1b	6.50 d (7.2)	6.22 d (7.0)
2	5.68 tq (7.5, 1.6)	5.60 tq (7.2,1.8)
4	2.07 m	2.10 m
5	1.89 m	1.90 m
6	5.26 brt (6.9)	5.26 brt (6.8)
8a	2.18 ddd (10.0,6.0,2.0)	2.16 ddd (10.2,6.0,2.1)
8b	2.03 brt (11.0)	1.98 brt (11.2)
9a	2.26 dddd (12.4,12.4,10.4,2.0)	2.23 dddd (12.2,12.3, 10.6,2.0)
9b	2.10 dddd (12.0,8.0,6.0,2.0)	2.10 dddd (12.1, 7.9, 6.0, 2.0)
10	6.94 ddd (10.6, 6.6, 1.9)	6.81 ddd (10.6,6.5,2.0)
12	4.88 brs	4.57 brs
13	5.40 brs	5.36 brs
14	5.06 brs	5.06 brs
16	1.79 s	1.78 s
17	1.72 s	1.72 s
19	1.48 s	1.51 s
20	1.58 s	1.56 s
OH		3.95 brs
OAc	2.03 s	
2'a		2.63 dd (8.9, 15.0)
2′b		2.75 dd (4.2, 15.0)
3'a	6.03 brs	4.38 m
3′Ъ	5.58 t (1.6)	
4	1.90 s	1.21 d (7.3)

Table 1 ¹H NMR Data of Compound **1** and **2** (CDCl₃, TMS, δ ppm) *

*Assignment from 1H-1H COSY, HMQC, HMBC and NOESY

Carbon No.	δ_{C}	1 DEPT	HMBC	$\delta_{\rm C}$	2 DEPT	HMBC
1	70.4	CH_2	H-2	70.2	CH_2	H-2
2	126.4	CH	H-1a, H-1b, H-20	126.0	CH	H-1a, H-1b, H-20
3	138.0	С	H-2, H-4, H-20	138.1	С	H-2, H-4, H-20
4	31.4	CH_2	H-2, H-20	30.8	CH_2	H-2, H-20
5	24.9	CH_2	H-4, H-6	24.9	CH_2	H-4, H-6
6	124.3	CH	H-8, H-19	124.8	CH	H-8, H-19
7	126.2	С	H-5, H-8, H-19	126.1	С	H-5, H-8, H-19
8	26.8	CH_2	H-6, H-9a, H-9b, H-19	26.3	CH_2	H-6, H-9a, H-9b, H-19
9	32.4	CH_2	H-8a, H-8b, H-10	31.8	CH_2	H-8a, H-8b, H-10
10	142.0	CH	H-8a, H-8b, H-9a, H-9b, H-12	141.9	CHH	-8a,H-8b,H-9a,H-9b, H-12
11	133.1	С	H-9a, H-9b, H-10, H-12, H-13	133.4	СH	I-9a,H-9b,H-10,H-12,H-13
12	73.9	CH	H-10, H-13, H-14	71.1	CH	H-10, H-13, H-14
13	82.9	CH	H-12, H-17	82.7	CH	H-12, H-17
14	121.0	CH	H-12, H-13, H-16, H-17	120.7	CH	H-12, H-13, H-16, H-17
15	140.0	С	H-13, H-16, H-17	140.0	С	H-13, H-16, H-17
16	25.7	CH_3	H-14, H-17	25.7	CH_3	H-14, H-17
17	18.5	CH ₃	H-14, H-16	18.5	CH_3	H-14, H-16
18	170.0	CO	H-10, H-12, H-13	170.1	CO	H-10, H-12, H-13
19	11.1	CH ₃	H-6, H-8a, H-8b	11.2	CH_3	H-6, H-8a, H-8b
20	23.8	CH_3	H-2, H-4	23.8	CH_3	H-2, H-4
OAc	170.0	CO	H-12			
	20.9	CH_3				
1′	166.0	CO	H-1, H-3'a, H-3'b, H-4'	171.0	CO	H-1, H-2'a, H-2'b,H-3'
2'	135.4	С	H-3'a, H-3'b, H-4'	45.5	CH_2	H-3', H-4'
3'	126.8	CH_2	H-4'	63.8	CH	H-2'a H-2'b H-4'
4'	18.3	CH_3	H-3'a, H-3'b	22.1	CH ₃	H-2'a, H-2'b, H-3'

Table 2 13 C NMR Data of Compound 1and 2 (CDC₁₃, TMS, δ ppm)*

*Assignment from ¹H-¹H COSY, HMQC and HMBC

References

- The planta institute of the Chinese Academy of Science, Chinese Advanced Planta Diagram 1. Science Publishing House, Beijing, 1985, 1, 363.
- Jiangsu New Medical College, *Dictionary of Traditional Chinese Medicine*, Shanghai Science Jiangsu and Technology Press, **1977**,1123.
 M. X. Liu, H. Y. Liu, Y. N. Zheng, X. G. Li, *Journal of Jilin Agricultural University*, **1997**, *19*, 117. 2.
- 3. 115.
- 4. S. Z. Zheng, J. X. Wang, J. S. Lu, Planta Medica, 2000, 66, 487.
- E. Maldowado, M. Bello, J. L. Villasenor, Phytochemistry, 1998,49, 1115. 5.

Received 27 August, 2001